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It is shown that any equilibrium state of classical charged particles with 
correlation having a spatial decay faster than 1/Ixl ~+2 in dimension v = 2, 3 
obeys the Stillinger-Lovett second moment condition. Under the same cluster- 
ing hypothesis, arbitrary localized external charge distributions are completely 
shielded. 

KEY WORDS: Charged systems; BGY hierarchy; screening; spatial clus- 
tering; electrostatic sum rules. 

1, INTRODUCTION 

Much information of interest regarding the equilibrium properties o f  fluids 
of charged particles can be derived from the structure factor S(k), the 
Fourier transform of S(x), the truncated charge-charge correlation func- 
tion. A fundamental property of S(k) for charged systems is its definite 
short wave length behavior: 

g(k) 1 
lim - (1.1) 

lkl~0 ]k] 2 w~fl 
which is equivalent to the sum rules 

fax S(x) = 0 (1.2)  

f dxxS(x) = 0 (1.3) 

fdx  Ixl2S(x) = 2v (1.4) 
o~.fi 
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with 0)2 = 27r, 0) 3 = 4~r in dimensions ~ = 2 and v = 3, respectively, and 
fl = (k 8 r ) - i  is the inverse temperature. 

Equation (1.2) is the usual electroneutrality condition, whereas Eq. 
(1.3) is trivially satisfied in uniform states. The sum rule (1.4), called the 
second moment Stillinger-Lovett condition (S.L. condition), is equivalent 
with the property that the inverse dielectric constant vanishes. This follows 
from the well-known relation (1'2)' 2 

c - l =  lim [1 - % f l  ] % f i r  Ikt-~0 - ~ S ( k )  = 1 + ~ dxlxl2S(x) (1.5) 

e = oe expresses the fact that a charged system satisfying (1.4) behaves 
as a perfect conductor from the viewpoint of electrostatics. In other words, 
the S.L. condition characterizes a plasma phase, by opposition to a dielec- 
tric phase, where 1 < c < o~. It is therefore of interest to know precisely 
when the S.L. condition holds. 

The purpose of this note is to present a simple first principle proof of 
(1.4), based on the only assumptions that the system is at thermal equilib- 
rium and that its correlations have a spatial decay faster than Ix] -("+2) in 
dimension p = 2, 3 (see Proposition 1). We emphasize that the proof does 
not involve any additional assumption on the behavior of the direct 
correlation function or the dielectric function itself, but relies on some new 
sum rules which have recently been found to be true in Coulomb sys- 
tems.(5-7) 

Moreover, under essentially the same hypothesis, we have previously 
shown that any state of charged particles, in the absence of external forces, 
has to be invariant under translations and rotations. (s'9) We therefore 
obtain the general result that classical Coulomb states which cluster faster 
than [Xl -(~+2) are necessarily homogeneous, isotropic, and "perfect conduc- 
tors." 

There are two instances where homogeneous phases of classical 
charged systems have been rigorously shown not to be of the plasma type. 
These are the K6sterlitz-Thouless phase of the two-dimensional low- 
temperature Coulomb gas (1~ and the two-component one-dimensional 
Coulomb gas at all temperatures. (11) In both cases dipoles form spontane- 
ously, owing to the confining nature of the Coulomb potential in one and 
two dimensions. The reasons for which our proof does not apply to these 
cases are the weak decay of the particle correlations in the K6sterlitz- 

2 Alternatively, Eq. (1.4) is a consequence of the assumption that the direct correlation 
function behaves as - B(ele2/Ixl) as Ixl ~ oo plus a short range contribution. (3'4) Eq. (1.4) 
has been rigorously shown from the cluster expansion in the high temperature phase (15) and 
follows in general from certain assumptions in the Sine-Gordon representation of the 
Coulomb gas (17) 
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Thouless phase (presumably like ]x[ -"  as expected for pure dipole gases) 
and the peculiar nature of the Coulomb force in one dimension. 

Crystalline phases (or phases with directional order) exhibit long-range 
order (i.e., weak clustering) in dimension u >/2, (9) and therefore we cannot 
draw any conclusion on the behavior of their dielectric functions from the 
present analysis. 

In the Section 2, we define the general setting and recall the relevant 
sum rules expressing the screening properties in charged systems. We give 
the proof of the S.L. condition in Section 3 for the case of a homogeneous 
state. We extend our proof to mixtures of ions and dipoles in Section 4 and 
deduce the version of the S.L. condition appropriate to this situation. This 
relation has also been found in Ref. 12 from reasonable assumptions on the 
direct correlation functions. 

In Section 5, we show that charges which are fractional with respect to 
the system's charges are shielded under the same hypothesis which are 
needed for the derivation of the S.L. condition. This point is of interest 
since fractional charges are precisely not screened in the K6sterlitz- 
Thouless phase and in one dimension. (m'~0 On the other hand, the shield- 
ing of the system's charges occurs under weaker conditions (i.e., integrable 
clustering) and is expected to be generally true. Furthermore, these consid- 
erations enable us to discuss the S.L. condition for inhomogeneous systems. 

The extension of these results to quantum systems will be given 
elsewhere. 

2. G E N E R A L  S E T T I N G  

Here and in the following section we will consider homogeneous and 
isotropic equilibrium states of charged particles in ~", ~ >/2. The particles 
of species a carries a charge e~ (e~ 4= 0 for some species); we introduce the 
abbreviated notation q = (a, x) where x denotes the position of the particle, 
and f dq . . . .  f~  dx ~,,~ . " " . 

The correlation functions o(ql), P(qlq2) (singlet, doublet dens i t ies . . .  ) 
describing the state of the system at temperature f l -  ~ are assumed to be 
bounded differentiable functions satisfying the usual BGY hierarchy (~3): 

lP(ql) = f dq F s (qlq)o(q lq) + f dq FL(q lq)I P(qlq) -- P(ql)o(q) B ] 

= o  (2.1) 

fl '~71p(q,q2) = I FS ( q,q2) + FL ( q,qz) ]p( q,q2) + f dq FS ( q,q)P( q~q2q) 

+ f d q  FL(q~q)[o(q~q2q) -- P(q)o(q,q2)] (2.2) 
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In (2.1) and (2.2), we have singled out the contribution of the Coulomb 
force: 

FL(qtq2)  = -- e,~ e,~2(Vlq~)(x I -- x2) 
(2.3) 

~(x) = { ~ g  ' v = 3  

L -  lnlxl,  v = 2 

FS(qlq2)  = Fs~2(xl  - x2) is a short-range two-body force, covariant under 
rotations and antisymmetric under the exchange of particles, which in- 
cludes the local repulsion effect needed for thermodynamic stability. Here 
F s is assumed to be integrable on R ~, but more singular repulsions or hard 
cores can be allowed (see comments at the end of Section 3). Because of the 
local neutrality, we have always (see comments in Section 3) 

e~p,~ + PB = 0 
OL 

where O~ are the (constant) particle densities and p;; is a uniform external 
charge density characterizing "jellium" systems. 

We introduce also the truncated (Ursell) functions defined in the usual 
way: 

O T(qlq2) = P(qlq2) -- O(ql)o(q2) 

0 r(qlq2q3) = O(qlq2q3) -- o(qO0 r(qlq2) -- o(q2)P r(qlq3) -- o(q3)P(qlq2) 

(2.4) 
Their rate of decay is specified by a parameter ~/such that 

[ r ' o r ( q l  . . .  qk)l < Mk < oo (2.5) 

with r = s u p i g l x i -  xjl, i, j = 1 . . .  k.  
The screening properties of charged systems are conveniently ex- 

pressed in terms of the excess particle density 0(q [  ql  �9 �9  q . )  when particles 
of t y p e a  I . . . a  n are fixed at x 1 . . . x  n: 

o(qql . . .  qn) 
o(ql  ql ' ' '  qn) -- p(q~ . . .  qn) + k ~qqi-- P(q) 

i=1 (2.6) 
8qq, = a ~ , a ( x  - x;)  

It has been proven (see Refs. 6-8) that if the clustering condition (2.5) 
holds with ~ > v + l for some nonnegative integer l and k = 2 . . . . .  n + 2, 
then the excess particle density P ( q [ q l . . .  qn) carries no multipole mo- 
ments up to order l. In particular when l - - 0  and l = 1, respectively, we 
have the charge sum rule 

(dqe~ ,o(q[q~  . . .  qn) = 0 (2.7) 
d 
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and the dipole sum rule 

f aq e<~xo(q I q, . . .  q.) 0 (2.8) 

Finally, let us define the function t3 T(qlq2): 

r(qlq2) = P r(qlq2) + 6q,q2P(ql) = P(ql ] q2)P(q2) = P(q2 ] qi)P(ql) (2.9) 

in terms of which the charge-charge correlation reads 

S(x  2 - x,) = • e,~le,,2,~r,~2(Xl ,x2) (2.10) 
GIO~ 2 

The charge sum rule implies (1.2), whereas in uniform states all higher- 
order multipole moments of S(x) have to vanish (when they exist) because 
of spherical symmetry. 

3. PROOF OF STILL INGER-LOVETT SECOND MOMENT 
CONDITION 

The precise clustering assumptions for the validity of the S.L. condi- 
tion are stated in the following proposition. 

Proposition 1. The S.L. condition (1.4) is satisfied in any homoge- 
neous isotropic neutral state obeying the BGY equations (2.1), (2,2), pro- 
vided that (2.5) holds with 

(i) ~ > v + 2 ,  k = 2  
v > 2  

(ii) ~ > v + l ,  k = 3 , 4  

and 

(iii) fdq, fdq  I%xd It, r(q,q2q3)l < ~o 

Before going into the proof, we give in Lemma 1 two equivalent 
formulations of (1.1) and (1.4) for uniform states. 

Lemma 1. Under the assumption (i) of Proposition 1, the formulas 
(1.1), (1.4) and (3.1), (3.2) are equivalent for any uniform state satisfying 
the electroneutrality condition (1.2), with 

e f d x [ f + + ( x - y ) s ( y ) ]  = 1  (3.1) 

_B : l  (3.2) 
P J L J  ] 

where q, is the Coulomb potential (2.3). 

The proof of Lemma 1 can be found in Appendix B. 
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Proof of Proposition 1. Because of translation invariance, the left- 
hand side of (2.2) can be written 

7 ,p( q,q2) = - 720( q,q2) = - 72P T ( qlq2) (3.3) 

Multiplying the first BGY equation (2.1) by P(qlq2)/P(q~) and subtracting 
it from the second equation (2.2) gives, with (3.3), 

O(qlq)o(qlq2) 
- 720 T(q~q2) = f i (dq  F(q~q) P(q~q2q) 

9(ql) d 
+ 8qq2O(qlq ) 

(3.4) 

where F(qlq2) = F~(qlq2) + FL(qlq2) is the total force. 
We take now the scalar product of (3.4) with e,~2x 2, sum over the 

species a 2, and integrate x 2 in a sphere of radius R centered at the origin. 
Integrating by parts, the left-hand side of (3,4) gives then 

f~x 21 <~ R dx2~e'~x2"~,2 72PT(qlq2) 

= - v f  dx2~e~2pT(q,q2) + f dS 2. ~2e~2x2or(q,q2) (3.5) 
Ixzl < R O~ 2 IX21 = R 

The assumption (i) implies that the surface term in (3.5) vanishes as R + oo, 
and the first term of the right-hand side converges to ve~,o(ql) by the charge 
sum rule, which is true when (i) and (ii) hold. (5'6) 

We get thus from (3.4) and (3.5) 

lim fi flx R dq2e'~2x2 

= -  e ,p(ql) (3.6) 
In order to obtain a sum rule for the two-point function, it is necessary 

to eliminate the contribution of the three-point function from (3.6). This 
can be done with the help of the following identities obtained from (2.4) 
and (2.6), respectively: 

O(qlq)o(qlq2) 
o(q~q2q) - P(ql) + r 

= o(q~)~T(q2q) + r(qlq2q) (3.7) 

= ( o ( q 2 1  q , q )  - p ( q 2 1  (3.8) 
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with 

o T(q,q)p T(q,q2) 
r(q,qzq) = P r(qlqzq) -- o(q~) + 6qq20 r(q,q)  (3.9) 

The dipole sum rule (2.8) for n -- 1,2, which is valid by assumption (ii) (see 
Ref. 6), implies with (3.8) that 

lim ( ( P(ql) +Sqq2p(qlq))=O (3.10) R--,~ JIx21 ~< 8 dq2 e~x2 P(qlq2q) -- P(qlq)P(q~q2) 

Since the short-range force is integrable, the clustering assumptions imply 
that the part of the integral of (3.6) involving FS(q~q) is jointly integrable 
for x and x 2 in R p • R ~. This allows to exchange the order of integrations in 
(3.6) and to take the limit R -~  co under the q-integral sign. Hence, by 
virtue of (3.10), the short-range force does not contribute to (3.6). 

To evaluate the contribution of the Coulomb force to (3.6), we notice 
from (3.7), (3.8) and the dipole sum rules that we have also 

lim ( dq2e~2x2r(qlq2q ) = 0 (3.11) 
R-->oo ,)[x21 < R 

Moreover, the expression (3.9) with (iii) shows that e~x2r(qlq2q ) is itself 
jointly integrable in q and q2- Exchanging as before the q integral and the 
limit R--->oo, we conclude from (3.11) that the contribution of e~x 2 �9 
FL(qlq2)r(qlq2q) to (3.6) also vanishes as R ---> oo. Thus we are left in (3.6) 
with 

lim f l ~  [ f  ] = - v G ,  dqF (q,q)pr(q2q) (3.12) R - ~  21 ~< R d q2  ec~2x2" L ,, 

When we introduce the definition (2.10) of the charge-charge correlation 
function and set x 1 = 0, we see that (3.12) is identical to (3.2), and thus to 
(1.4) or (1.1) by the lemma. 

Comments 

1. There is no loss in generality in assuming that the state is transla- 
tion and rotation invariant. In fact, with essentially the same hypothesis as 
in Proposition 1 [precisely, (2.5) holds with ~q > u + 2, k = 2,3,4 and 
fdql fdq2 le•2x2110r(qlq2 . . -  qn)[ < oo for n = 3,4 3] it has been proven that 
any solution P(qO, o(qlq2) of the BGY equations (2.1), (2.2) has to be 
Euclidean invariant (see Proposition 3, of Ref. 9). 

3 Here,  ~ > t, + 1 is sufficient  w hen  there is no b a c k g r o u n d  density,  i.e., @ = 0. 
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The same remark applies to the neutrality ~ p ~  + PB = 0: any trans- 
lation-invariant equilibrium state having integrable clustering is necessarily 
locally neutral (Ref. 5, Proposition 6). 

2. Since E = e - lD,  c - I =  0 means phenomenologically that there 
cannot exist a constant bulk electric field E v ~ 0 in the system. This agrees 
with the result of Ref. 9, Corollary 2 of Proposition 3, showing that under 
the same clustering conditions, there does not exist any solution of the 
equilibrium equations with nonvanishing bulk electric field. 

3. As already mentioned in the introduction, the S.L. condition is 
violated in the two-dimensional K6sterlitz-Thouless phase and in the 
one-dimensional (two component) Coulomb gas. The reason for the nonap- 
plicability of our proof is different in the two cases. The clustering of the 
K6sterlitz-Thouless phase is presumably too weak. However, in the one- 
dimensional Coulomb gas, although the clustering is known to be exponen- 
tially fast, the dipole sum rule (2.8) with n = 2 cannot be established 
because of the peculiar nature of the one-dimensional Coulomb force (i.e., 
nondecreasing at infinity; see Ref. 6, Section C). In fact, the use of the 
dipole sum rule for n = 2 in (3.8) is the nontrivial part of our proof. 
[Equation (2.8) with n = 1 is trivially true in uniform systems.] 

4. If we define 

P( qoql . . .  q,)  
oo(ql  . . .  qo) = o(qo)  

(3.13) 
q0 = x0) 

then P0(ql . . .  q,) are the correlation functions of an equilibrium state in 
the presence of an external particle c~ 0 fixed at x o. 

We see that (3.4) can be written as 

~'P0(ql)---- ~(F(e)(ql) + f dq F(e)(q)pT(qql)) (3.14) 

where we have set ql --) q0, q2 -~ ql, and F(e)(q)  = F(qqo)  in (3.4). 
Equation (3.14) is a special case of a more general equation for non- 

uniform systems, the Wertheim, Lovett, Mou and Buff (WLMB) equation, 
which relates the density gradient to an integral of the external force F (e) 
over the pair correlation function (the external force being here due to one 
of the system's particle ~0 fixed at x0). 

The WLMB equation for charged systems in the case of arbitrary 
boundaries and general external forces has been recently established and 
discussed in Ref. 14, and will be used in the Section 5. 

5. The case where the two-body short-range force F~,2(x ) has a 
nonintegrable singularity at the origin can be treated in the same way 
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provided that the correlations vanish sufficiently fast at coincident points, 
i.e., FS(qlq2)p(q~q2),FS(qlq2)p(qlq2q3) . . . . .  are integrable in ql. It can 
then be checked that the same proof can be carried through. 

4. MIXTURE OF IONS AND DIPOLES 

The results of the preceding section can be extended without difficulty 
to the case of a uniform dipolar solvant. We indicate here the needed 
modifications of the proof. 

The particle of species a carries now either a charge e~ or a permanent 
dipole moment /~ = d~c0 with orientation ~o. We set q = (a,x, co) and 
fdq . . . .  fR, d x f d o ~ . . . .  We normalize the integration over dipole 
angles to one, i.e., f &o = 1. 

We assume that the ionic densities do not vanish. (The consideration 
of this section does not apply to a pure dipole fluid which has a very 
different physical behavior.) With these notations, the BGY hierarchy 
keeps the same form (2.1) and (2.2), with the following definition of the 
short- and long-range part of the force: 

F s includes any integrable force, antisymmetric and covariant under 
rotations, as well as the dipole-dipole force (which has also an integrable 
decay). 

F L consists of the charge-charge and the charge-dipole forces 

Fg(qlq2) = -~71(eald~2--1- eal~a 2 �9 ~72 -'1- ea2P, al �9 ~71)~r(x I -- X2) (4.1) 

I f dy f(lYl), 
q,r(x) = (4.2) 

[ -  f dy 1nix - ylf(lyl), ~ = 2 

where f is a smooth function with compact support such that fdyf([yl) 
= 1 .  

We have introduced a regularization of the Coulomb potential at the 
origin to suppress the I xl -~ singularity in the charge-dipole force at x = O. 
The difference between this cutoff force and the exact Coulomb force can 
be included as a contribution to F'(qlq2). 

In addition to the charge-charge correlation function 

S ( x  2 - x 1 ) = f a ~ , f a ~ 2  y, eatec~2pTaE(XlO~l,X2r 2eZp~8(x2 - xl) 
OtlO~ 2 O' 

(4.3) 
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we define the charge-dipole correlation function 

(4.4  

Then, the S.L. conditions (1.1), (1.4), (3.1), (3.2) are again equivalent 
provided that one replaces S(x) by S ( x ) -  (V-P) (x ) ,  and we have the 
analog of Proposition 1. 

Proposit ion 2. The S.L. condition f d x l x l 2 ( S ( x ) - ( V  �9 P ) ( x ) ) =  
-2v/o~,fl is satisfied in any homogeneous isotropic state obeying the 
equations (2.1), (2.2) provided that (2.5) holds with 

(i) ~ > l , + 2 ,  k = 2  when al and a 2 are charges; ~ > v + l ,  k = 2  
when a 1 is a charge, a2 a dipole; 

(ii) ~ > p + 1, k = 3, 4 when a i are all charges or charges and dipoles; 
~/> v, k = 2, 3, 4 when all a i are dipoles; 

(iii) f dqlf dq2l%x2l[p T(qlq2q3) I < ~.  
(See the proof of Lemma 2 in Appendix B.) 

l .emma 2. Under the assumption (i) of Proposition 2, the formulas 
(1.1), (1.4), (Yl), and (3.2) are equivalent [with S(x) - (7 �9 P)(x) in place 
of S(x)] for any uniform state satisfying the electroneutrality condition 
(1.2). 

The lemma also holds if we have the regularized Coulomb potential ~ r 
(4.2) in (3.1) and (3.2). 

For the proof of the Proposition 2, we first establish Eq. (3.4) as in 
Proposition 1. Let then the particle of type a I be charged (e~, v a 0, d~, = 0). 
In view of the clustering property of the charge-dipole correlation one has 

R-,~lim alxzl( <. f a,o22  o2 lffX2 720 r (qlq2) = 0 

Using the charge sum rule (2.7) which is valid when (i) and (ii) hold 
(Appendix A of Ref. 14), we get 

lim ( Rdx2f do~z~(e~x2 + I~)" 72PT(qlq2) = Pe,,p(ql) (4.5) 
R--)" oo ,,]]x2t < a2 

Hence the analog of (3.6) becomes 

lim fl flx R dq2 ( e~'~x2 + l~) 
R--ff oO 21 < 

= -- Pe,~O(ql) 

P(qlq)P(q,q2)p(q,) + 8qq~p(qlq)) 

(4.6) 
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The rest of the argument is now identical to (3.7)-(3.11). We use here 
the dipole-sum rules 

fdq  (cox + ~,)o(q I q, . . .  q,) = 0, n = 1,2 (4.7) 

which are also true under the assumptions (i) and (it) (see Appendix A of 
Ref 14). We are thus left with 

l i m  t~flx2t<<, dq2(e.x 2 + I~.:)'[ f dqFL(qlq)~r(q2q)l =-re . ,  (4.8) 

After the change of variable x -~  x + x 2 in the q-integral, taking into 
account that/z.,  = 0 and setting x 1 ----0, (4.8) takes the more explicit form 

lim f l (  dq2 (e,x 2 + be,:) 
R-->o~ dtx2] < R 

�9 V 2 [ f d q ( e ~  + , ~  " V x ) O r ( x  - X2)p(q,o/20~2) j ~--- --p (4.9) 

The bracket [ . . .  ] in (4.9) is the potential at x z due to the excess 
particle distribution p(q] a20~02) with a particle a 2 fixed at the origin. Since 
this distribution has zero total charge and no dipole moment, the corre- 
sponding potential has to decrease faster as Ix2[ - (~- ' )  as Ix2] < ~ (see 
Lemma 4, Appendix A). 

As a consequence, the term in (4.9) proportional to #-2 vanishes as 
R ~  oc and when the definitions (4.3) and (4.4) are introduced, (4.9) 
reduces to one of the equivalent formulas (3.1) and (3.2) with S(x) 
- (V �9 P)(x) replacing S(x). The S.L. condition (4.1) is now a consequence 

of Lemma 2. 

5. COMPLETE SHIELDING 

In this section, we show that complete shielding occurs under the same 
conditions as those necessary to derive the S.L. condition. We then extend 
the S.L. condition to locally inhomogeneous systems in R ~. 

We consider here an infinitely extended, pure charged system (no 
dipoles) in the presence of a localized distribution of arbitrary fixed charges 
C(~)(x). The equilibrium correlations o*(ql . . .  q.) of the inhomogeneous 
system are solution of the BGY hierarchy whose first equation is 

fl -1Vlp*(ql) = e~E(x,)o*(ql) +fdqFL(q,q)o*T(qlq) (5.1) 

E(xl)  = Eo + ax Ix, xl + 

is the electric field due to all charges, i.e., the system's charge density 
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C*(x)  = 08 + ~,~e~p*(x) and the external distribution c(e)(x), and E 0 
= E ( x  I = 0 ) .  

Throughout this section, we study asymptotically neutral states, assum- 
ing that the system's charge density decays as 

,o some (5.3) 

With (5.3), E ( x l )  is well defined by Eq. (5.2) and everywhere bounded (see 
Ref. 14). 

The system has the complete shielding property if any external distribu- 
tion is screened by the system's charges, i.e., 

; d x (  C*(x) -1- c(e)(x)) = 0 (5.4) 

In the particular case where the external distribution consists of point 
particles of the same species as those which constitute the system itself, 
located at q~ . . . . .  qn, one has 

P( qq] . . .  qn) 
o * ( q )  - o ( q ,  . . . q ~  

and therefore (5.4) is identical to the n-charge sum rule (2.7). The shielding 
of the system's charge occurs when the clustering is integrable (since then 
the charge sum rule holds), and is likely to be even more generally true. 

The situation is, however, quite different when the external charges are 
not integer multiples of the system's charges. In fact, fractional charges are 
not shielded and the S.L. condition is violated in the one-dimensional 
Coulomb gas at all temperatures (even though the clustering is exponen- 
tially fast). (10 The same remark applies to the K6sterlitz-Thouless phase in 
two dimensions at low temperature. (m) On the other hand, it follows from 
the cluster expansion that both properties (i.e., complete shielding and S.L. 
conditions) are true in the high-temperature phase in dimension u/> 2. (!5) It 
is therefore natural to conjecture that the S.L. relation and the complete 
shielding property are equivalent statements. 

The following proposition shows that in fact, both properties hold 
under essentially identical clustering assumptions. 

Proposit ion 3. Let o*(ql . . .  q~) be an equilibrium state of a Cou- 
lomb system in the presence of an external (point) charge Q*. Then the 
complete shielding of Q* occurs if the condition (2.5) holds with 

(i) ~/> ~ + 2 ,  k = 2,3,4, t,~>2 

(ii) fdq~fdq21or(qlq2...qk)l, k = 3 , 4  

To establish Proposition 3, we first show that the state 0* is homoge- 
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neous at infinity and that the local perturbation induced by the external 
charge decays in an integrable way. 

I.emma 3. Under the hypothesis of Proposition 3, there exist homo- 
geneous densities P~ and correlations P(qlq2) = O . . . .  (x 1 - x2) such that 

0* ( x ) -  O~ = O( ix@~+~ ), ~ > 0  (5.5) 

�9 ---(  Pa,a2(Xl,X2) pa,a2(Xl X2) O iXl .jr 

uniformly with respect to x I - x 2. 

Proof  of  tornrna 3. Information on the asymptotic behavior of the 
density can be obtained from the first WLMB equation (Wertheim-Lovett- 
Mou-Buff): 

v,o*(q,) = B f dq (5.7) 

F(e)(Q) = e~Q*(x/Ixl") is the external force. 
It has been shown in Ref. 14 that Eq. (5.7) [and Eq. (5.11) below] can 

be derived rigorously from the BGY hierarchy under the conditions of the 
proposition and (5.3). 

Introducing the definition 
J,,T gxl(x) = 2 e~o~,(xxl) (5.8) 

OL 

Equation (5.7) takes the form 

f X f X-l-Xl Vlp*(xi) = fiQ* d x ~  gx,(x) = fiQ* dx ix + xll,  gx,(X + xl) (5.9) 

From the clustering assumptions (i) and the results of Ref. 6, gx,(X) has 
no multipoles up to order 2. Hence, the same is true for the shifted 
distribution gx,(x + xl) for each fixed x 1. Moreover, it follows from (i) and 
(5.8) that gx,(x + x 0 is O(1/]x[ ~+2+~) uniformly with respect to x I . We can 
therefore conclude from the Lemma 4 of Appendix A that 

= o (  1 
IXll~+l+ ~ ) (5.10) V lP~I(Xl ) 

which in turn implies the result (5.5) by integration. 
To prove (5.6) we use similar arguments starting from the WLMB 

equation for the two-point function, (14) 

(Vl + V2)p*(qlq2) = fl(F(e)(ql) + F(e)(q2))p*(qlq2) 

B f dqF(e)(q)(o*(qqlq2)-  o*(q)o*(qlq2)) (5.11) + 

The details are in Appendix C. 
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Proof of Proposition 3. As a consequence of Lemma 3, we note that 
, T  Of ,2 (x l -  x2) has the same clustering properties as p,~,,~2(Xl,X2). Indeed, 

using (5.5), (5.6), and (i), one gets 

[Oa,a2(X 1 --  X2) [ ~< ]O~,~2(X 1 -t- a , x  2 + a)[ + O 

IX 1 - -X21 p + 2 + '  q" 

Letting la[-~ ~ with Xl,X 2 fixed, we obtain 

T M 
x2)l < Ix,  - x21 (5.12) 

We deduce from (5.6) and (5.12) that 

(1) p,~,~(x I ,x2) - p~2(x  I - x2) = O - -  (5.13) 
Iz,l" 

uniformly with respect to x 2. 
The statement of Proposition 3 is then obtained using a result of Ref. 

6, Section IV showing precisely that complete shielding occurs whenever 
(5.5) and (5.13) are true. 

Comments 

1. Integrating (5.7) on x 1 and summing on charges e~,, we get in the 
same way as (3.6) what did follow from (3.4) 

fdxx (5.14) 

where S*(x ,y)  is the charge-charge correlation of the inhomogeneous 
state, and q~ the Coulomb potential (2.3) (see also Ref. 16). 

Equation (5.14) is the proper generalization of (3.2) to nonuniform 
systems. It cannot in general be reduced to the form (1.1) or (1,2). 
However, for a locally perturbed state, we expect that the spatial average of 
the charge-charge correlation 

ff(x - y )  = v~R "lim ffl fJaS*(x + a , y +  a)=la lLmS*(x  + a , y +  a) 

still satisfies the S.L. condition in the form (1.1) or (1.4). Starting from 
(5.14) and using the same arguments as in Proposition 1, this will certainly 
be the case whenever the difference S(x  - y )  - S*(x, y) is jointly integra- 
ble in x and y. 

2. The result of Proposition 3 can be generalized to arbitrary local- 
ized external charge distributions, as well as to mixtures of ions and 
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permanent dipoles. For systems limited by infinitely extended walls (as a 
charged planar electrode) this analysis can be carried through with some 
modifications due to additional surface terms which enter in the WLMB 
equation (see Ref. 14). 

3. It is interesting to remark that one must also use the dipole sum 
rule with n = 2 in the proof of Proposition 3 [see (B7)]. The quadrupole sum 
rule (which was automatic for P(qlq~) in the homogeneous case) is also 
used nontrivially to derive Proposition 3. 

4. It can be checked that the following more general result is true. If 
p is replaced by u + l, l a positive integer, in the condition (i) of Proposition 
3, then C*(x) + C(e)(x) carries no multipoles up to order l. In particular, if 
the p *r have exponential clustering, the screening of C(e)(x) is perfect, i.e., 
without the occurrence of any multipole moment. This extends the perfect 
screening property discussed in Ref. 7 to arbitrary external charges. 

APPENDIX A 

The following lemma (essentially the same as Lemma 1 of Ref. 6) is 
always used to estimate the asymptotic behavior of the correlation func- 
tions. We state it here again for convenience. 

I .emma 4. Let F(x) be a locally integrable function on R e, continu- 
ously differentiable up to order ! + 1 in a neighborhood of x = m with 

(i) (3}k!..iF)(x) = ixl +k , k = 0 , 1 , . . . , / + l ,  y > 0  

and g(x, y) a bounded function such that 

(ii) g(x, y)= O ( 1 ) ,  

uniformly with respect to x. 
Then 

f dy R,(x, y)g(x, y) 

for some 3 > 0 and where 

(- I) 
R , ( x ,  y )  = F ( x  - y )  - X 

k = O  

e > O  

=o( , ) (A1) 

k! Yi''' 'Yik(3~!"ikF)(x) (A2) 

Proof, Consider first in (A1) the integration domain ]Yl < [x]/2. An 
estimation of the rest of the Taylor expansion of F(x -y)  around x gives 
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with (i) 

IR,(~,y)I ~< M tY/+' 

with 0 < 8 < 1, M'  = M(1/2)  1-8 
Thus, choosing 0 < 8 < e, 

fly + R,(x, ylg(x, y) < x/2 

- -  ~< M '  ly/+8 Ixy+,+~ (A3) 

M '  
Ixl ~+'+~ ~jy(j~<-L~j/2dYlyt'+~Ig(x'Y)[ 

--o( 1 
I~1~ §247 ) 

since by (ii) ly[~+Sg(x, y) is integrable in y uniformly with respect to x for 
0 < 6 < e .  

The contribution of the domain lY[ >/]x]/2 in (A2) is estimated 
exactly as in Lemma 1 of Ref. 6. 

Let us note that this lemma still holds in the case y = 0 under the 
conditions 

r(x) = O(lnlxl) 

(~Ik!..ikF)(x) ~-- O(  1_ ~, k =  l . . . . .  e-.~ 1 

APPENDIX B. "PROOF OF LEMMAS 1 AND 2" 

A .  Equivalence of (1.1) and (2.2)-(4) 

l iml~L_~oS(k)=0 is equ iva len t  to f dxS(x)=O, i.e., (1.2). 
liml~l__,o(1/lkl)S(k ) = 0 is equivalent to f dx xS(x) = 0, i.e., (1.3). 

Using (1.2) and (1.3) 

1 _ lira 1 S(k)= lim (dx( eikx-- 1-ikx ) 
~ tkl~ol~l 2 ~kl~oJ ~ T~ ~ 

- 21 fdx(~.x/s(x)= - ~ fdxlxl2S(x) (B1) 
where the exchange of the limit and the integral is allowed by dominated 
convergence. 

B. Equivalence of (1.2)-(4), (3.1), and (3.2) 

Under the clustering assumption (i), S(x)= O(1/[x[ ~+2+~) and since 
the state is isotropic, S(x) has neither dipole nor quadrupole moment. 
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Therefore, using E~(0~)~))(xl) = (A0)(xl) = 0, x~ r 0, and applying L e m m a  
4 with 7 = v -  2 and  l =  2 we find 

f dx ~,(xa - x)S(x) = f dxIep(Xl- x) - ~,(x 0 + x. (V~,)(x,) 

__ 12 ~iJ. (xtxJ-- l(~ijp )(0(/j2)~)(X1)]S(x) 

In  the same way, for the force F =  - V  0, L e m m a  4 with y = v -  1 and 
l = 2 yields 

(j dxF(x 1 - x)S(x) = dxR2(x I ,x)S(x) = 0 

Consider now 

-oa~f dx, lxll2X(xl) --- l i m  flx, l<.RdXllX,12V2f dxO(x 1 - x ) S ( x )  (B4) 

(3.2) and (3.1) follow when we perform one and two integration by parts in 
(B4), noting that  the surface terms vanish in view of (83) and  (B2). 

The proof  of L e m m a  2 is identical to that of L e m m a  1 when one 
notices that the covariance of P(x) under  rotations implies 

f d x  P(x) = 0 (85)  

and  

f dx (vx'Pk(x) - 6ikx �9 P(x)) = 0 (B6) 

With (B5), (B6), and ~ i _ ~i(i)iF )(Xl) - (V - F)(xl) = 0, x I v a 0, we can write 

f dx , (x~-  x)(V. e)(x) 

~fdx{(F(Xl - x)-  f(xl))" P(x) 

= f ax(F(x, - x) - e(x,) + (x. V)F(x,)). e(x) 

f dX.Rl(Xl, x)P(x) (87) 
Since P(x)= O(1/[x[ "+l+') [assumption (i)], we conclude f rom L e m m a  4 
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with ~, = v - 1 and  l = 1 that  (B7) is o(1/Ixll=+~). Similarly, 

f dxF(Xl-  x ) ( V .  P ) ( x )  = Vl f dxF(Xl - x). P ( x ) =  O(1/IXl[ *'+1+6) 

(B8) 
Notice  finally that  if q, is replaced by or  in (3.1) and  (3.2), these equations 
can as well be writ ten in terms of ~ and  S r, pr with 

= ~ay S(x - y ) f ( y )  St(x) 
, J  

(B9) i "  pr(x) = Jay P(x - y)f(y) 

I t  is not  difficult to check that  S r, P~ have the same propert ies  as S and P. 
Therefore,  using again  the sum rules, we get also 

2. _ f dxlxl2 f a y ( S i x _  y ) _ ( v .  P ) ( x -  y))f(y) r fi 

= fay  f i y ) f d x  (Ixl ~ + 2x . y  + lyl~)(Six)  - (V.  P )(x))  

= f a x  IxI~(Si x) - i v .  P)ix)) 

APPENDIX C. "PROOF OF LEMMA 3" 

L e m m a  4 is applied as follows in the proof  of L e m m a  3. 

A. Since gx~(X + xl) [(5.8)] has no mult ipole momen t s  up to order  
l = 2, one has as in Appendix  B 

f x , + x  dx ix 1 + x[" gx ' ix  + x , )  = dxRzix , , -X)gx,(X + xl) 

(5.10) follows then f rom L e m m a  4 with " / =  v - 1 and  l = 2. 

B. We write (5.11) in terms of the t runcated functions 

(71 + 72)O*V(qlq2)= fl f dq F(e)(q)[o*T(qlqzq ) + (6qq I "b 8qq2)O*T(qlCl2) l 

( e l )  

With  the introduct ion of the variables 

_ _  X 1 4 -  X 2 X 1 - -  X 2 

2 ' 7 -  2 

and  the definitions 
g(~,~) = ,T .... (xl,x2) 

h(x,~,~) ,v x 
OL 

(C2) 
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(C1) takes the simple form 

X 
V,g(~,7) -- flQ* f dx - ~  [h(x ,~ ,7)  + (ealS(X -- ~ - -  7)  

+ e,~28(x -- ~ + 7))g(~, 7)] (C3) 

From (2,6) we have the identity 

o*T(qqlq2) + (~qq, + 6qq~)o*r(qlq2) 

= P*(q[q,qz)P*(qlq2) -- (P*(q lq , )  + o*(q[q2))o*(qOP*(qa) (C4) 

which shows that the left-hand side of (C4) satisfies the l = 0, 1,2 sum rules 
for fixed ql and q2 since 7 > v + 2 by assumption (i). This implies that 
h(x,l~,7) + ( % 6 ( x  - ~ - 7) + e~ 8(x  - i~ + 7))g(~,7) has no multipole mo- 
ments up to order 2 for fixed ( and 7. So does the shifted distribution 
obtained by replacing x by x + ~ for each fixed (. 

This allows to write (C3) as 

, x + ~  

+ ( e ~ 6 ( x  - 7) + e~26(x + 7))g(~,7)]  

= r e~(~,- z)[h(~ + ~,~,7) 

+ ( e ~ 6 ( x  - 7) + e ~ 8 ( x  + rt))g(~,7)] 

= fiQ*(e~,R2(~, - 7) + e~2R2(~, 7)) g(~, 7) 

fiQ* f dx R2(~, - x)h(x + 4, f, 7) (C5) + 

Since [R2((,7) [ < M'@I2+~/[~I ~+'+~) for fixed 7, and ( l a rge  enough [see 
(13)] and since [ g(~,7)[ < M/IT] ~+2+~ with 6 < e by the clustering assump- 
tion, we have 

uniformly with respect to 7- 
The same is true for R2(~, -7)g(~ ,  7)- 
Moreover, it follows from the definition (C4), (2.7), and the condition 

(i) of Proposition 3 that 

Ih(x + ~,~,7)l < ~ M  r=sup(Ix+71,1x-TI,217i) rv+2+r 

Since Ix[ < sup(Ix + 71, ix - 73 < r one has h (x  + ~;,ii,7) = O(1/[x[  ~+2+~) 
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uniformly with respect to ~ and 7- The Lemma 4 implies then that the last 
term of (C5) is O(1/l~l "+1+~) uniformly with respect to ~/. 

We find thus 7~g(( ,~)= O(1/l~t "+1+8) and with the definition (C2), 
this implies the result (5.6) of Lemma 3. 
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